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In principle, the motion of the pendulum can be calculated from its geometry and the forces acting on 
it. The greatest force by far is gravity, and the lesser ones are stiffness in the suspension, the frictional 
resistances, and the forces from the escapement that overcome these so as to sustain the motion. The 
suspension is designed to maintain a geometry that is nearly constant, being a nearly circular path, 
which makes the force due to gravity nearly proportional to the displacement from equilibrium. The 
present paper concerns these forces, and how they combine to affect the pendulum motion. It reports 
work carried out by an engineer, who is not a horologist, but who has been doing research into the 
history of mechanical clocks and wanted to understand how their actual performance has developed 
according to technical and scientific advances. The work has attempted to assess the issues that must be
addressed, and to show how a combination of experiment and theory is necessary to deal with them.

In practice, the escapement forces are not easy to estimate, either theoretically or experimentally: they 
are very small, and they depend on friction, play and compliance in the going train, and in the 
escapement. Frictional resistances are not easy to calculate, but can be measured fairly 
straightforwardly by looking at the decay in pendulum motion without the escapement, but with the 
pendulum crutch, connected. The experimental part of the present paper concerns the estimation of 
these forces, and the measurement of pendulum motion under different conditions of drive and friction.
The findings show that suspension, resistance and escapement action have to be separately studied in 
detail to produce a consistent overall view in which experiment and theory match up.

The pendulum motion can be determined theoretically from the drive and frictional forces by several 
procedures. The oldest, most versatile, and most easily visualised of these is due to Airy. To see how it
works, we can look at the phase diagram, in which the speed of the pendulum is plotted against its 
displacement (Fig 1) and the speed is scaled so that maximum speed has the same amplitude as 
maximum displacement. The motion of an ideal pendulum is described by the path of a point going 
clockwise around a circle in this diagram, as shown. The effect of an additional force is to change the 
speed, i.e. deflect the path upwards or downwards away from the circular. Thus, for instance, a 
frictional force that is opposite to the speed will send the path spiralling into the centre by acting 
downwards in the upper half of the circle and upwards in the lower half. The effect of a force in 
general can be seen in Fig 1, where it is applied briefly at the point A. The resulting change in speed 
can be resolved into two components, one that acts along the radius at A, and so changes the amplitude
of the motion, and the other that acts along the tangent, and so changes the time of traversal of the 
whole circle, i.e. the period. Airy’s formulae prescribe the summation of these components throughout 
the cycle to calculate the resulting motion. The effects of friction, circular error, escapement forces and
any other deviation from the ideal can be calculated. This procedure is not exact, because the 
components have been calculated as if the path remained circular, whereas it is actually made non 
circular by them. So the deviations have to be small for the formulae to be accurate.
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One more recent theoretical work on pendulum motion has sought to improve on this inexactness by 
considering the path in the phase diagram under a frictional resistance which is proportional to speed1. 
This path is a logarithmic spiral. The effects of a constant force are also neatly calculated by remarking
that such a force shifts the centre of the motion along the displacement axis, while it is applied. The 
effects of anchor and deadbeat escapements are then calculated by the reasonable assumption that the 
mechanism delivers a succession of constant forces as it progresses through its successive intervals of 
action. The problem then becomes one of putting together the resulting pieces of logarithmic spiral in 
the phase diagram to make a closed cycle, which is solved numerically. Deviations from the Airy 
formulae are detected, but only by looking at cases where the forces are applied with gross asymmetry,
and at high levels of friction (a logarithmic decrement of 0.1), neither of which are found in actual 
clock mechanisms. 

Another more recent work2 uses the first few components of the Fourier series to solve the equation of 
motion of a nearly ideal pendulum. Unsurprisingly, since it is based on the same mechanical 
assumption, this produces the same result as Airy, although the author does not refer to the earlier 
work. The Airy formulae are conveniently reworked in modern notation in another paper3, which also 
describes the phase diagram analysis. The paper goes on to demonstrate the use of Green functions in 
the analysis, because they are particularly suited to the impulsive nature of the force applied by the 
escapement; the results are similar to Airy’s for such a force. Impulsive forces also feature in an 
analysis of the verge and foliot clock4, in which frictional losses are ignored. 

Fig.1. Phase diagram, showing effect of frictional force 
(broken line) and impulse at A



None of these later papers seem to present an advance on Airy’s method, nor useful results on what 
might happen in real clocks. Useful results on escapement error are reported by Feinstein, as well as 
alternative numerical methods for the solution of particular cases of non ideal motion5. The methods 
produce virtually identical results, which is reassuring since high accuracy is required for the small 
effects concerned. The effect of escapement forces is reduced to that of a single impulse, however, and 
is not directly related to actual mechanisms. The traditional term for the forces applied by the 
escapement being “impulse” appears to have caused confusion among some authors who have taken it 
to imply that the forces are impulsive in the dynamical sense, i.e. are of negligibly short duration. To 
avoid the confusion, the term “drive” will be used in the present paper instead. 

Escapement basics

The first task in analysing the effect of the escapement is to assess the forces it applies to the 
pendulum. Both deadbeat and anchor escapements are designed to deliver constant forces over 
intervals of the motion by means of a cam action, so we start with that. The standard designs 
recommend that the pallet moves radial to the escape wheel; in this case the force on the pallet arm due
to it being driven forward by the escape tooth is given by
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where μ is the coefficient of friction, s is the slope of the pallet face with respect to the direction of 
travel of the tooth, and Pf is the tangential component of force delivered at the contact by the tooth. A 
similar analysis for the reverse action shows the magnitude of the reverse force is
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Actually, we are more interested in the fraction of work transmitted, since the escapement is just one 
part of the power transmission from drive weight to pendulum. This is given for the forward motion by
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and similarly for the reverse. We can see that if μ = 0 then E = 1, as expected. For an anchor 
escapement, where the direction of the drive is reversed when the direction of sliding is reversed, we 
might expect Pr / Pf  > 1 because the forward force is reduced by friction in the train, and the opposite 
is true for the reverse. It is hard to estimate the size of this ratio in practice, since the reverse motion is 
very small, and there is play and elasticity in the train to be taken up before the friction acts fully. In 
the measurements shown below it appears that, for the clock in question, the ratio is approximately 
unity, so this will be the value used here.
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Figs.2 & 3 Drive loops for an anchor 
escapement (top) and for a deadbeat.

Figs.4 & 5 Efficiency of work transfer by cam action of pallets, for amplitudes from 1.2 to 
2 times the escape amplitude, for anchor (left) and deadbeat.
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It is useful to give a plot of E against the position of the bob, x, to show when the forces act in the 
motion. These are shown for anchor and deadbeat mechanisms in figs 2 and 3, with arrows to show the
direction in which they are executed. The values of s used are 0.45 for the deadbeat and 0.9 for the 
anchor; the value of μ used is 0.15, which is taken from the findings below. To plot E in this way is 
particularly useful, because it is also the force on the bob as a proportion of what it would be with no 
friction. We use the linear displacement of the bob rather than the usual angular displacement so that 
the plot relates directly to the mechanics of bob motion. Thus the plot can be used to think about both 
the action of the escapement, and the accleration of the bob: we shall refer to this plot as the drive 
loop. The total work delivered to the bob in a cycle is proportional to the area enclosed by the drive 
loop, remembering that area is positive when the loop is executed clockwise, and negative when anti. 
Plots of this fraction against s are shown in Figs 4 and 5, for μ = 0.15 and various amplitudes. This is 
the efficiency of the transfer of work by the pallets, and does not include consideration of the lost work
in the drop, or elsewhere.

The drive loops also illustrate the basic effect of the escapement on the period of the motion: the 
anchor loop has an overall negative slope, like the effect of gravity, and so speeds the motion, whereas 
the deadbeat is opposite. The effect of changes in the escapement force is not so easy to judge, because
the amplitude changes as well, but that is dealt with in the next section.

Applying the Airy formulae

To calculate the effect of the drive on the motion we can use the Airy formulae. This is in principle the
same as in Rawlings6, but extended to cover the more realistic drive loops shown above, and 
generalised suitably for iterative solution. We apply the condition that the net effect of the drive force 
and the frictional losses are to make the amplitude change zero, so the motion is steady. This reduces 
to requiring the net work done to be zero; the work going into the bob from the drive is
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Where ae is the position of the bob at escape, and W is the work done by the escape wheel in a whole 
cycle (two beats). This integral is the area calculation of the drive loop described above, which is 
straightforward because the drive loop can be broken down into separate intervals in which the drive 
force is constant.

The frictional resistances are usually assumed to be proportional to speed, giving a constant decrement 
when undriven. This may be reasonable for air resistance and other viscous losses, but is not 
appropriate for the friction in the pendulum crutch, which is more close to a constant resistance. This 
assumption is supported by the experiments below; using it we have the work lost by the bob is
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where β is the proportion of loss to speed, ω is the angular frequency, a is the amplitude, and c is the 
constant resistance, all referred to the bob. For a purely proportional loss, c = 0 and β = ω / Q. The 
equation 
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can then be satisfied by iteration to find a if W is known, or vice versa.

After this iterative calculation, the fractional gain can be found as
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Using the previous assumption, that the drive action can be broken down into intervals in which E 
takes a constant value, let Ei be the value of E over interval i, and the above integral becomes the sum 
of straightforward integrals:
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which is readily evaluated from the vertices of the drive plot.

Relating the theory to what might realistically happen to change the rate of a clock.

The frictional losses can be expected to change with time after lubrication. The escapement friction 
coefficient, μ, and the resistance of the crutch, c, will increase. The value of W will also change, being 
decreased by losses in the gear train and escape wheel bearings. The results of the calculations for 
various changes in these three parameters have been explored by writing a program that takes text 
input from a spreadsheet to define the parameter values, and the ranges over which they are to change, 
and presents the results in a format that can be pasted into a spreadsheet for display. Plots of results 
from this program are shown below, where they are compared with results from experiments.

Experiments have also been carried out with a mantel clock, driven directly by a spring in a barrel and 
beating three times a second. The clock was the Westminster chime model of the Enfield Clock Co., 
made c.1933, in the “Napoleon hat” style. The pivots and pallets were dismantled, cleaned and 
minimally lubricated with household oil, and manually aligned on reassembly. Some wear was 
observed on the pallets, but they had enough depth to be aligned so that the escapement bore on 
unworn areas. The clock was tested immediately after cleaning and lubrication, then run for three 
months, and retested. Small weights were hung on the hour hand to produce changes in the drive force.
Measurements were taken using a video of a marker attached to the pendulum bob, so that period and 
amplitude could be monitored together. The system for taking these measurements, and assessing the 
results is described in the next section.

Marker tracking and free pendulum motion

An illustrative frame from a video sequence is shown in Fig. 6. The marker is a circular black and 
white pattern, the position of which is located by detecting the edges of each ring. The marker is 
designed so that there is as much edge as possible, so more than one ring is used. The thickness of each
ring has to be sufficient for it to be clearly measurable despite the motion blur, so for the case of this 
pendulum that means two rings, each providing an inner and an outer edge. The video camera is a 
consumer mini DV camera, and takes interlaced frames of 720x576 pixels at 25 frames per second. In 
each frame the even lines are scanned, then 1/50th of a second later the odd lines are scanned, so the 
frame shown is the composite of these two scans. The scans can be separated in software, and 
displayed as two separate half frames, each with half the vertical scale of the original, and much less 



blur: this is shown in Fig.7. These pictures are then measured separately, and the results scaled back to 

the original, so as to produce measurements at 50fps. 

The software requires the user to indicate a starting point inside the outer ring in one half frame, and 
then searches from that point for the outer edge of that ring, and tracks the edge around. An ellipse is 
then fitted to the resulting edge pixel coordinates, so that the extent and centre of the edge profile can 

Figs. 6 and 7. Images of pendulum bearing a marker, as captured (left) and with the interlaces 
separated.



be determined. The inner edge is then found and fitted, and from these data the inner ring is located 
and its edges tracked. The mean centre coordinates of the fits and the dimensions of the outermost edge
fit are stored. The corresponding starting point in the other half frame is calculated, and its marker 
image is similarly processed. The velocity is calculated, and used to predict the starting point for the 
next pair of half frames; in this manner the entire sequence of frames are processed. 

The output then consists of a sequence of frame numbers and pixel coordinates of the centre of the 
marker in each frame. To find the period, amplitude and mean of the motion, a sine curve is fitted to a 
subset of these coordinates at each frame in the sequence. The best size of the subset to remove 
numerical artifacts appears to be so that it covers 1.5 times the period, i.e. 50 frames. The periods are 
then averaged over 100 frames, to remove residual artefacts. Fig 8 shows the resulting data for the 
pendulum entirely free, at three different amplitudes, as a plot of gain in seconds per day against 
number of cycles. The result at the lowest amplitude shows an erratic variation of about ±0.7s, which 
can be taken as an assessment of overall error in the method, as far as timing is concerned. Some of 
this variation may not come from inaccuracy in the measurements: the data at higher amplitudes has 
larger variations, which are presumably due to genuine mechanical effects of the suspension. Some of 
the variation at the lowest amplitude may also be genuine, and so the underlying random error may be 
considerably less than the overall figure quoted above. Experiments in which two smaller targets are 
attached to the bob, and their separation measured in the same way, indicate that the error in separation
measurement is about ±0.1pixel, i.e. ± 5μm at the resolution used here. The error in positional 
measurement of the single target would be about half of that value. 



An important phenomenon emerged from this data on a free pendulum when it was compared to the 
calculated circular error: the gain is about 3.2 times the calculated error. The cause of this has been 
traced to the suspension spring. The pendulum bob was detached, and the motion of the upper part of 
the shaft (a plated steel pressing about half the length of the pendulum) on its own was measured. A 
further measurement was made with a mass of 2.27 gm attached to this shaft at a radius of 55mm. In 
this way the returning moment of the spring was made similar to that of gravity, and the effect of 
amplitude on gain was greatly increased, and thus could be estimated. The rate error of the spring 
alone was about 7.3α2, where α is the angular amplitude. The data also enabled an estimate of the 
moment of the spring: the spring was equivalent to a weight of 2.5gms on the bob, as compared with 
the bob weight of 120gms. According to these calculations, we would expect the effect of the spring 
error on the pendulum complete with bob to be about 2.4 times that of the circular error due to gravity,
in good agreement with the data obtained by direct measurement.

Measuring the running pendulum

Motion measurements were made with the pendulum crutch connected, but the escapement 
disconnected. A logarithmically decrementing sine curve was fitted to these, at each of three 
amplitudes, so as to provide an estimate of the decrement. The decrement varied with amplitude, 
indicating a nonproportional damping. The decrement for proportional damping is

pD

and for a constant resisting force is
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Fig.8 Relative gain versus cycles of free pendulum motion at amplitudes of 6.4mm, 5.2mm and 
3.6mm, on a pendulum of theoretical length 110mm.
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so that if this expression describes the losses, a graph of aD against a should be linear. This is shown in
Fig.9, with a linear fit. We note that for proportional damping, this graph should pass through the 
origin: clearly the constant resistance is substantial. From the parameters of the fit, the magnitude of 
the proportional and constant resistances were found: these are used in the comparisons with theory 
that are shown below. The proportional element of the damping corresponds to a Q of about 900, 
which seems reasonable for this movement. The constant resistance equates to an acceleration of 
0.78mms-2 at the bob. This can be compared with what would arise from friction (coefficient 0.15) at 
the arbor pivots (diameter 0.75mm) under the weight of the pallet/crutch assembly (11gms), which 
would give 0.47mms-2 at the bob. The measured value is high, but the calculated one is ideal, and 
assumes no play in the pivots: a play of 20μm alone would explain the discrepancy.

Motion measurements were also made with the clock in operation. Fig 10 shows a plot over about one 
minute of the variations of the mean postion, amplitude and period of the motion. We note that there 
are cyclic variations in period and amplitude, a slow one having a period of about 45 pendulum 
periods, and a fast one having a period about seven times faster. Since there are 45 teeth on the escape 
wheel, and seven teeth on its pinion, these would appear to come from variations in the drive 
geometry. 

Fig. 9 Plot to evaluate constant and proportional elements in the pendulum 
friction (see text)
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Effects of drive force variation and lubrication

The measurements cover three sets of conditions: the lubricated state with various reduced drive 
forces; the variation between just lubricated and run in states at full drive force; and the run in state 
with various drive forces.

Motion measurements were made with weights hung on the hour hand to oppose the drive; it was 
found that eight grammes was sufficient to make the operation of the clock barely sustainable. Motion 
measurements were made with weights of 2, 4, 6 and 8 gm applied, in an ascending and descending 
sequence. The results were compared with that obtained from the numerical estimates based on 
measured drive geometry and the Airy equations, as described above. It was found that with the 
friction coefficient on the pallets set to 0.15,  a reasonable agreement with the measured values was 
obtained, as shown in Fig.11. 

Similar measurements were made after the clock had been running for three months, by which time it 
was losing about 100 secs per day. At this stage, it was found that running was just unsustainable with 
6gm applied. Various trials with setting the parameters indicated that an increase in the constant 
frictional resistance of the crutch by 73%, a reduction in the drive by 33% and an unchanged pallet 
friction produced gain and amplitude results from the numerical computation that matched the 
measurements. Results of the measurements and computation are also shown in fig.11. 

The combined effect of circular error and spring nonlinearity, as determined in the free pendulum 
experiments, was included in the above calculations. For this clock, the escapement error is about 25 
times as large as the circular error, or eight times larger than the combined effect of circular error and 
spring nonlinearity. 

Fig. 10 Variation of measured parameters when running
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Acceleration of the pendulum

Since the pendulum is driven, we might hope to detect the accelerations produced by the drive by 
analysing its motion. The position data was numerically differentiated twice with respect to time to 
obtain the accleration, and the calculated acceleration of the free pendulum was subtracted from it, to 
leave the drive element. The result is shown in Fig.12 for a few cycles of the motion, in the same 
manner as the theoretical forces of Fig.4 are displayed. Also included in the figure is the acceleration 
obtained from the theoretical model: that is from the forces of fig.4 combined with the resistive forces 
obtained from the loss estimate made above, divided by the mass of the bob. The net area of this total 
acceleration loop is zero, since the motion is steady. Fig 12 also shows the accelerations observed at 
some of the reduced drive forces.
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Fig. 11 Gain, and amplitude relative to the escape amplitude, against drive for calculated 
(lines) and measured (points) values, after lubrication and after three months running.
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broken line shows the calculated acceleration.



Discussion

It is essential in making calculations of effects of changes in conditions on the escapement error to find
their effect on amplitude as well. The software written to do this is straightforward, and can be made 
freely available, but it is designed for the author’s personal use, so some development would be 
worthwhile if there was interest from others in using it. An important feature of the present work is 
that it has been possible to match measured performance with the escapement theory, with a minimum 
of assumptions. In carrying this out, it was observed that having the amplitude measurements as well as
the rate measurements was vital in determining the parameters. For example, my initial guess at pallet 
friction coefficient being 0.3 led to a calculated variation of amplitude that was much smaller than that 
observed. The value of 0.15 which produced a good match turned out to be more reasonable according 
to expert tribological opinion.

The calculation of the efficiency of operation of the pallets is straightforward, but the formulae and 
plots are presented here because they are not in agreement with some that have been made available on
the web7. We note that the maximum efficiency of each escapement is found when the drive slope is 
near to the recommended standard value, but the exact location of the maximum depends on the 
coefficient of friction. Trials with varying the friction coefficient indicate that the calculated maximum
efficiency is at the standard slope when the coefficient is slightly higher than the value found here. 
This is reasonable, since attaining maximum efficiency to keep the clock going is most important when
lubrication has deteriorated.

The video technique used in this paper is low cost (particularly if you already have a video camera) 
and remarkably accurate. Positional errors are about 3um, and at 50 readings per second this makes 
detailed study of pendulum motion possible. Rate can be measured to better than one second per day 
by only two seconds of observation: more extended periods will produce lower errors, by averaging, 
but of course since rate varies when running the meaning of such an average is not clear. The accuracy 
of the camera clock would also have to be verified, since it is unspecified, and not necessarily stable 
over extended periods. The software for making the measurements could also be made freely available,
with the same caveat as above. 

The losses in the pendulum crutch for the clock tested here are about twice as large as the proportional 
losses which presumably come from air resistance, and damping in the suspension mounting. An 
estimate of escapement error based on the Q value obtained from the free pendulum would be far 
under the actual value. With the video measurement accurate and detailed estimates of loss can be 
made under a range of conditions for the undriven pendulum.

The contribution of the suspension spring to the variation of rate with amplitude is over twice that from
the circular error. The spring contributes about 2% of the returning force, so we may adopt this as a 
design guide for the suspension: that for every one percent of the returning force that is supplied by the
spring, we may expect a 100% contribution to the circular error. The present spring is in two strips 
each 2mm wide and has a length of 5mm and thickness of about 0.04mm. The spring has about 20 
times the stress from bending as it has from the weight of the bob, so it is thicker than needed from a 
strength point of view. A more flexible spring would provide less error, but also less well defined 
geometry of pendulum motion, which may lead to other problems. 

The direct measurement of acceleration due to the escapement, and its match to the acceleration 
deduced theoretically from fitting the response of the pendulum to variations in drive force is 
particularly pleasing. The measured acclerations are not sharp square plots like the theoretical ones 



because each numerical differentiation uses four measured points, so the values of these points are 
averaged, and any sharp corners would be blurred as a result. The measured acclerations show a 
considerable asymmetry, most marked in the difference between the extreme left and the extreme right 
of the plots, where the direction of swing is reversing. At the left, the acceleration dips sharply, down 
to a value slightly below the steady left to right level. At the right, the magnitude of the accleration 
remains greater than the steady right to left level, before settling down to it. The latter phenomenon 
implies that some of the energy of the drive is being stored: this may be happening because of play in 
the escape wheel bearings. At the right of the plot the escape wheel is being lifted by the pallets, 
whereas at the left it is being pushed downwards. The asymmetric form of the plot is consistent with 
the weight of the escape wheel delivering the extra acceleration at the right as it descends, but digging 
in at the left and increasing friction, and so taking away from the delivered force at the left.

It would be of interest to extend this work to higher quality clock mechanisms, with longer and heavier
pendulums. In these, resistance from a plain bearing crutch would have a similar moment, and so 
produce much smaller acceleration. The contribution of the suspension spring may also be smaller. The
acceleration due to the escapement would be much smaller and less easily measurable, but the speed of
operation is also slower, so more data and higher accuracy will be available. 

Calculated errors for other cases

Since we have verified the escapement error calculations, obtained values for frictional losses, and 
estimates of how they might change with use, we may now calculate the effect of such changes on 
other mechanisms. The changes correspond to those found in the tests reported above, which are not 
necessarily typical of other running conditions. A pendulum of period 2s, escapement amplitude 20mm
(about 1°) and bob mass 1Kg was examined. The table below shows results as follows:

Case A

Long case clock with anchor escapement, subject to similar changes in friction to that found in the 
mantel clock, with a similar relative amplitude. A value of Q = 2000 has been assumed, and the crutch 
friction adjusted so that on a drive power of about 20 lb.in/day it produces adequate amplitude. The 
initial condition corresponds to the commonly found excessive amplitude and drive power input.  
Escapement error is about ten times circular error. 

Case B

As above, but with deadbeat escapement fitted, to see the effect of just a change in escapement. 
Escapement error is reduced, and circular error increased: as it happens, they almost balance, but, as 
Airy commented, this is a coincidence that cannot be securely obtained.

Case C

A deadbeat in a more likely context: a regulator, Q = 7000, with less variation in drive and friction, 
and closer running. The escapement error is not much reduced: this is because the smaller amplitude 
makes the error larger. This is illustrated in the next case.

Case D

As case C, but larger amplitude. 



A Longcase B Deadbeat C Regulator D Regulator

initial final initial final initial final initial final

rel. drive 1.5 1.5 1.3 1.3

pallet friction μ .15 .15 .15 .15 .15 .15 .15 .15

prop loss β / M  s-1 .0015 .0015 .0015 .0015 .00045 .00045 .00045 .00045

con loss c / M  ms-2 .000075 .00014 .000075 .00014 .000075 .0001 .000075 .0001

rel. ampl. a / ae 2.04924 1.6 2.26807 1.6 1.76549 1.3 1.99869 1.5

work/cycle Wi μJ 37.1631 33.0797 44.0707 33.0797 16.1304 13.4023 19.0889 15.9972

esc. err. -32.9588 -6.88307 -5.73703 -3.90513

circ. err. 3.5842 5.64975 3.11983 3.81461

efficiency 0.4158 0.5552 0.5372 0.6048 0.5881 0.63525 0.5645 0.615
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